On Block Ordering of Variables in Graphical Modelling
نویسندگان
چکیده
In graphical modelling, the existence of substantive background knowledge on block ordering of variables is used to perform structural learning within the family of chain graphs (CGs) in which every block corresponds to an undirected graph and edges joining vertices in different blocks are directed in accordance with the ordering.We show that this practice may lead to an inappropriate restriction of the search space and introduce the concept of labelled block orderingB corresponding to a family of B-consistent CGs in which every block may be either an undirected graph or a directed acyclic graph or, more generally, a CG. In this way we provide a flexible tool for specifying subsets of chain graphs, and we observe that the most relevant subsets of CGs considered in the literature are families of B-consistent CGs for the appropriate choice of B. Structural learning within a family of B-consistent CGs requires to deal with Markov equivalence. We provide a graphical characterization of equivalence classes of B-consistent CGs, namely the B-essential graphs, as well as a procedure to construct the B-essential graph for any given equivalence class of B-consistent chain graphs. Both largest CGs and essential graphs turn out to be special cases of B-essential graphs.
منابع مشابه
Graphical Gaussian modelling of multivariate time series with latent variables
In time series analysis, inference about causeeffect relationships among multiple times series is commonly based on the concept of Granger causality, which exploits temporal structure to achieve causal ordering of dependent variables. One major problem in the application of Granger causality for the identification of causal relationships is the possible presence of latent variables that affect ...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملA single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the in...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملA new 2D block ordering system for wavelet-based multi-resolution up-scaling
A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of the simulated models at the expense of losing the precision. Several multi-scale ...
متن کامل